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ABSTRACT
INTRODUCTION Ferritin is the best biomarker for assessing 
iron defi ciency, but ferritin concentrations increase with 
infl ammation. Several adjustment methods have been 
proposed to account for infl ammation’s eff ect on iron biomarker 
interpretation. The most recent and highly recommended 
method uses linear regression models, but more research is 
needed on other models that may better defi ne iron status in 
children, particularly when distributions are heterogenous and 
in contexts where the eff ect of infl ammation on ferritin is not 
linear.

OBJECTIVES Assess the utility and relevance of quadratic 
regression models and quantile quadratic regression models in 
adjusting ferritin concentration in the presence of infl ammation.

METHODS We used data from children aged under fi ve years, 
taken from Cuba’s national anemia and iron defi ciency survey, 
which was carried out from 2015–2018 by the National Hygiene, 
Epidemiology and Microbiology Institute. We included data 
from 1375 children aged 6 to 59 months and collected ferritin 
concentrations and two biomarkers for infl ammation: C-reactive 
protein and α-1 acid glycoprotein. Quadratic regression and 

quantile regression models were used to adjust for changes in 
ferritin concentration in the presence of infl ammation.

RESULTS Unadjusted iron defi ciency prevalence was 23% 
(316/1375). Infl ammation-adjusted ferritin values increased 
iron-defi ciency prevalence by 2.6–4.5 percentage points when 
quadratic regression correction model was used, and by 2.8–6.2 
when quantile regression was used. The increase when using 
the quantile regression correction model was more pronounced 
and statistically signifi cant when both infl ammation biomarkers 
were considered, but adjusted prevalence was similar between 
the two correction methods when only one biomarker was 
analyzed.

CONCLUSIONS The use of quadratic regression and quantile 
quadratic regression models is a complementary strategy in 
adjusting ferritin for infl ammation, and is preferable to standard 
regression analysis when the linear model’s basic assumptions 
are not met, or when it can be assumed that ferritin–infl ammation 
relationships within a subpopulation may deviate from average 
trends. 

KEYWORDS Alpha-1-acid glycoprotein, C-reactive protein, 
anemia, iron defi ciency, ferritin, acute phase protein, Cuba

INTRODUCTION
Interpreting iron indicators in the presence of infl ammation is 
a topic of particular interest to public health.[1] Serum ferritin 
concentration is recognized by WHO as the best indicator of 
populations’ iron defi ciency,[2] but infl ammation can aff ect ferritin 
concentrations, as it is an acute phase protein (APP).[3] For this 
reason, WHO suggests accompanying ferritin measurements 
with measurements of other APPs to confi rm the presence of 
infl ammation.[1,2] Among the most widely-used infl ammation 
biomarkers in clinical practice and nutrition research are C-reactive 
protein (CRP) and Alpha-1-acid glycoprotein (AGP).[4]

Several approaches have been proposed which use APPs 
to adjust for infl ammation’s eff ects on ferritin levels and other 

biomarkers,[5–8] but there is still no consensus as to a preferred 
method.[4] In addition to taking the advantages and limitations 
of each method into account, the choice of method must be 
weighed against the burden of infection in the country or region 
where it is applied.[9] Most studies have been conducted in 
low- to middle-income countries with moderate to high infection 
burdens.[10–15] 

Cuba is a developing country considered to have a population 
with a low level of infl ammation. The most recent study on 
iron defi ciency in children aged under fi ve years supports the 
hypothesis that ferritin concentrations change in magnitude 
according to the state of infl ammatory processes in the fi rst fi ve 
years of life.[16]

Iron status in Cuban children aged under fi ve years is modifi ed in 
the presence of infl ammation.[16] In Pita’s study,[16] the ferritin 
concentrations of 1375 children were adjusted for infl ammation 
(measured by CRP and AGP), using four of the most well-known 
approaches in recent literature: a) higher ferritin cut-off  point 
(>30 g/L); b) excluding subjects with infl ammation (CRP >5 mg/L 
or AGP >1 g/L); c) CRP- or AGP-based arithmetic correction 
factors; and d) regression correction using the method proposed 
by the BRINDA group (Biomarkers Refl ecting Infl ammation 

IMPORTANCE This study demonstrates the usefulness of 
two new approaches for correcting ferritin concentrations 
in the presence of infl ammation, which would improve 
methods for evaluating iron defi ciency in Cuban children 
aged under fi ve years , and thus provide more reliable data 
on iron defi ciency prevalence in the country.
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and Nutritional Determinants of Anemia).[17] The signifi cant 
disparity between unadjusted ferritin values and those adjusted 
by some of the above approaches underlines the importance of 
correcting for infl ammation and the need to develop adequate 
tools to examine the validity of the methods used for correction. 
Regression correction (RC) is recommended,[7] but the need for 
continued investigation into other methods of adjusting ferritin 
concoentrations is emphasized.[18]

The RC approach is based on subtracting infl ammation’s eff ects 
from observed ferritin concentrations. This approach is less 
subject to bias and allows for continuous correction of ferritin 
even for lower reference values for infl ammation than those 
traditionally used.[19] However, it is based on the assumption 
of a linear eff ect of infl ammation on iron defi ciency indicators; 
in practice, relationships between iron status biomarkers and 
APPs (CRP and AGP) are not linear.[4]  Additionally, diff erent 
types of relationships could exist for subpopulations that deviate 
from average trends for heterogenous distributions. It may 
therefore be necessary to use more fl exible regression models, 
like quadratic regression models[20] and quantile regression 
models.[21–24]

Quantile regression (QR) is considered a natural extension of the 
standard regression model and allows for separate regression 
models to be used for diff erent parts of the dependent variable’s 
distribution. QR’s additional fl exibility may broaden the description 
of infl ammation’s eff ect on ferritin’s conditional distribution. An 
additional advantage to QR is that it does not depend on normality 
assumptions or transformations.

Some exogenous factors—such as observations below 
detection limits—can alter parameters of the dependent 
variable’s conditional distribution. It is common practice to fi ll in 
undetected or censored data with a value equal to or less than 
the detection limit. However, when there are a considerable 
number of such replacements, estimates of mean eff ects 
and standard errors of least-squares regression models will 
not be reliable, risking erroneous conclusions. QR is more 
robust against these types of outliers. Therefore, QR models 
could be used to not only detect heterogenous CRP and AGP 
eff ects at diff erent quantiles of ferritin values, but also to obtain 
more precise estimates compared to mean regression when 
normality assumptions are breached, or when there are outliers 
and long tails.[24]

Taking into account the need for more robust adjustment models 
that off er more precise measurements, we set out to estimate 
possible non-linear relationships and the usefulness and 
relevance of quadratic regression and quadratic regression by 
quantile models to explain ferritin concentration’s relationship with 
CRP and AGP infl ammation biomarkers in Cuban children aged 
under fi ve years.

METHODS
Population, study area and variables We used data pertaining 
to population, study area and variables obtained from Cuba’s 
national anemia and iron defi ciency survey, a cross-sectional 
study carried out by the National Hygiene, Epidemiology and 
Microbiology Institute (INHEM), from February through April each 
year from 2015–2018 in four randomly-selected regions of the 

country. The sample included 1375 presumably healthy children, 
with no diagnosis of chronic disease, aged 6 to 59 months, 
and complete serum ferritin, CRP and AGP records. A detailed 
description of sample selection can be found in the aforementioned 
article by Pita.[16]

Case defi nition Iron defi ciency was defi ned as ferritin 
concentration <12 μg/L, the cut-off  point recommended by 
WHO.[2] Acute infl ammation was defi ned as CRP ≥5 mg/L and 
chronic infl ammation as AGP >1 g/L.[2]

Statistical analysis Graphs and simple statistics were used 
to study the distribution of the three biochemical variables. All 
showed some kind of positive skew and were transformed to their 
natural logarithms to avoid disproportionate ranges. Once data 
was transformed, histograms and normal probability plots were 
constructed to visually judge normality. 

To explore the relationship between ferritin and infl ammatory 
biomarkers, children in the sample were divided into 10 subgroups, 
determined by intervals of equal length, according to ln(CRP) 
or ln(AGP) values. Box-and-whisker plots were constructed to 
observe ferritin concentration patterns in the diff erent ranges of 
each infl ammation biomarker.

APP’s eff ect on ferritin was evaluated using models on a 
continuous scale. We used linear regression, quadratic regression 
(Rc) and quantile quadratic regression (QRc). Models were 
adjusted considering each biomarker’s eff ect (CRP and AGP) 
both separately and jointly. We constructed scatterplots to show 
bivariate associations.

To interpret iron stores in the presence of infl ammation, ferritin 
concentrations were adjusted using two approaches: quadratic 
regression correction (RcC) and quantile quadratic regression 
correction (QRcC).

These analyses were conducted using the statistical software R, 
version 3.5.3 (Free Software Foundation, USA).[25] We used the 
The Im function of the Stats statistical package was used to fi t 
models with the least squares method. Model fi t by quantiles was 
performed using the rq function of the quantreg package.[26]

Estimation of quantile regression’s eff ects While ordinary 
least squares regression (OLS) off ers only information on the 
conditional mean, QR allows us to estimate conditional quantiles 
of a response variable’s distribution  based on a set  of p 
predictor variables.

Analogous to linear regression, where , the QR 
model for a conditional quantile  can be formulated as:

 

where 0 <  < 1 and  denote the conditional quantile 

function for the  θ‒θth quantile.  is the response vector,  

is the explanatory variable matrix and  is the vector for 
unknown parameters for the generic conditional quantile .
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Unlike OLS regression, in which a single regression line is fi tted, 
QR has multiple lines, and therefore, as many coeffi  cient vectors 

 as quantiles are considered.

Parameter estimates in linear QR models are interpreted in 
the same way as any other linear model. Therefore—as in the 
OLS model—in the case of a multivariate QR with p explanatory 

variables, the QR model coeffi  cient  can be interpreted as 
the rate of change of the Ɵth quantile of the dependent variable 
distribution by unit change in the jth regressor:

A median regression (  = 0.5) of ferritin concentrations on 
infl ammation biomarkers specifi es changes in median ferritin 
concentration as a function of predictors. Indicators’ eff ects on 
median ferritin concentration can be compared with their eff ects 
on other ferritin quantiles. As we increase from 0 to 1, we can 

determine the full distribution of , conditional on .

Quantile regression correction Suppose that we have data 
, and that the parameter of interest is 

the conditional quantile of , given by . Pairs  are 
assumed to be observations of randomly-selected individuals 
from a population.

While the eff ects of CRP and AGP are uniquely calculated in 
linear regression, in quantile regression they vary depending on 
the desired quantile. It is possible to identify for each individual the 
QR model that can best predict the response variable to provide a 
unique vector of coeffi  cients.[23]

Consider the QR model for a given conditional quantile θ:

The generic element of matrix  is the dependent variable’s 
estimate corresponding to the ith individual according to the θth 
quantile.

The best estimate for each individual is the one that minimizes 
the diff erence between observed and estimated values for each 
of the k models:[23]

 (1)

Once  is identifi ed for each individual i, ferritin concentrations 
are adjusted by subtracting the estimated eff ects of infl ammation 
on the corresponding quantile assigned to each individual.

Take, as an example, the measurements of ln(ferritin) and ln(CRP) 
of the random sample of Cuban children aged under fi ve years. 
The quantile quadratic model used to evaluate the eff ect of each 
infl ammation biomarker on diff erent parts of ferritin’s conditional 
distribution is expressed as follows:

 (2)

where  is the intercept and  and  are the regression 
coeffi  cients of the θth quantile.

For all QR models formulated in this research, fi ve conditional 
quantiles (θ = 0.10, 0.25, 0.50, 0.75, 0.90) were used for synthesis 
purposes.

The graphs of each quadratic quantile function are parabolas in 

the form of , so the vertex is their lowest point. In this study, a 
threshold for infl ammation was defi ned as the point at which the 
quadratic quantile function was minimized. This occurs when:

Where  and  are the estimates of the regression coeffi  cients 

of each quantile function in (2). Once identifi ed  for each 
individual according to the criteria in (1), ferritin concentrations 
were adjusted by performing the following transformation:

To avoid overfi tting, the correction was applied according to the 
following expression:

The adj subscript refers to the ferritin concentrations’ fi tted 
values. The ref subscript refers to infl ammation reference 
values, under the assumption that they mark the cutoff  points 
of infl ammation biomarkers, from which ferritin concentrations 
increase.

Results on the values of infl ammation-adjusted ferritin concen-
trations were expressed in the original measurement scale. 
Iron defi ciency was determined by applying a ferritin cut-off  of 
<12μg/L[2] to infl ammation-corrected ferritin concentrations.

Ethics This research was approved by INHEM’s research ethics 
committee, and that of the Cybernetics, Mathematics and Physics 
Institute. Information was kept confi dential, without revealing the 
childrens’ identity.

RESULTS
Participant characteristics After an exploratory analysis, 10 
children with extreme values were excluded from the study: 3 with 
CRP values >76 mg/L, and 7 with AGP values ≤0.012 g/L. The 
sample was thus comprised of 1365 children. Sample distribution 
by age and sex was as follows: 36.3% (496/1365) <2 years; 63.7% 
(869/1365) ≥2 years; 50.4% (688/1365) boys; 49.6% (677/1365) 
girls.

Iron defi ciency prevalence (ferritin <12 μg/L) was 23.2% 
(317/1365). The prevalence of acute infl ammation (CRP ≥5 mg/L) 
was 11% (150/1365) and that of chronic infl ammation (AGP >1 
g/L) was 30.8% (420/1365).
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Ferritin concentrations changed when considered together with 
CRP and AGP values that were above or below the cutoff  points 
established to defi ne infl ammation. Median ferritin concentration in 
children CRP-measured infl ammation was 46.3 μg/L (Q1 = 20.8, Q3 
= 64.1) and that in children without infl ammation was 24.0 μg/L (Q1 
= 12.2, Q3 = 47.5). Median ferritin concentration of AGP-measured 
infl ammation was 34.5 μg/L (Q1 = 17.1, Q3 = 53.65) and that of 
children without infl ammation was 23.0 μg/L (Q1 = 11.7, Q3 = 44.3).

Relationship between infl ammation and iron defi ciency 
Figure 1 shows the means and the 0.10, 0.25, 0.50, 0.75 and 0.90 
quantiles of ln(ferritin) in each subgroup, of the variables ln(CRP) 
and ln(AGP), respectively.

The distribution of ln(ferritin) conditioned to ln(CRP) is similar in the 
fi rst subgroups, but as the magnitude of infl ammation increases, 
the distribution of ln(ferritin) shifts toward higher values. Moreover, 

Figure 1: ln(ferritin) concentration distributions in each subgroup according to: (a) ln(CRP) and (b) ln(AGP) 

AGP: Alpha-1-acid glycoprotein; CRP: C-Reactive protein
The mean of ln(ferritin) in each subgroup is represented by asterisks, while the median is represented by the line that cuts the box delimited by the fi rst and third quartiles. 
The extremes represent the symmetrical quartiles 0.10 and 0.90. The dashed horizontal red line represents the cut-off  point for iron defi ciency (ferritin <12 μg/L). The values 
indicated on the vertical axis correspond to the values of the quantiles 0.10, 0.25, 0.50, 0.75 and 0.90 of the variable ln(ferritin) for the entire sample. The values on the 
horizontal axis correspond to the upper limits of the intervals defi ned by the subgroups.

this variability does not seem to be constant (Figure 1a). Figure 1b 
shows a non-linear pattern in which ferritin concentrations are low 
when infl ammation is moderate, and are high, for both high and 
low ln(AGP) values.

Eff ects of CRP and AGP on ferritin estimation In univariate 
linear regression models, the eff ect of ln(CRP) on ln(ferritin) was 
signifi cant (0.105, p <0.000), suggesting that on average, when 
CRP values increase, ferritin concentrations also increase, but 
mean ln(ferritin) concentrations did not change signifi cantly (0.066; 
p = 0.298) with increasing ln(AGP). When both infl ammation 
biomarkers were included in a model, both eff ects were signifi cant. 
The estimated eff ect of ln(CRP) was positive (0.128, p = 0.021), 
but the eff ect of ln(AGP) was negative (‒0.162, p = 0.025).

Graphs were used to fi nd inconsistencies as per assumptions 
of models’ normality, linearity and homoscedasticity. Using 
information from Figure 1 as a guide, we evaluated quadratic 
functions in order to achieve a better fi t. For illustrative and 
comparative purposes, Figure 2 shows two graphs that represent 

the linear and quadratic regression functions for each of the 
univariate models.

The minimum value of the nonlinear function is reached when 
ln(CRP) is ‒1.182, so the CRP value from which infl ammation 
begins to positively infl uence ferritin values is 0.31 mg/L (Figure 
2a), but it is nearly impossible to visually discriminate ferritin 
values below the vertex of the quadratic function. Inside the range 
of CRP values defi ned by the segment where linear and quadratic 
functions intersect, the fi t of the two functions is similar, and ferritin 
concentrations increase more rapidly as infl ammation increases.

The quadratic model (Figure 2b) shows a U-shaped relationship 
between ln(ferritin) and ln(AGP), with the vertex at ln(AGP) of 
‒0.397. Thus, infl ammation begins to positively infl uence ferritin 
from AGP = 0.67 g/L. On average, ferritin concentrations tend to 
rise in individuals with high AGP values.

Table 1 shows the estimates of the quadratic regression models 
(Rc) for the conditional means of the combined and individual 
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infl ammation biomarkers: Rc-(CRP), Rc-(AGP) and Rc-(CRP, AGP). 
Estimated coeffi  cients were signifi cant (p <0.05). Adjusted R2 values 
were small, but higher than those obtained using linear models. 
Due to the high heterogeneity of the data, the quadratic models 
can only explain a small portion of ln(ferritin)’s variation around the 
mean. Associations explaining ferritin’s relationship to CRP values 
may be diff erent in other parts of the conditional ferritin distribution.

Quantile regression feasibility and adequacy Quantile regres-
sion shows variation between ln(ferritin)’s quantile distribution. 
In diff erent parts of the distribution, proposed models show an 
infl ammation–iron defi ciency relationship, which, as expected, 
was not linear and was identifi ed in regression to the mean. Table 
1 shows estimated coeffi  cients for the 0.10, 0.25, 0.50, 0.75 and 
0.90 quantiles of three models: QRc, QRc-(CRP), QRc-(AGP) and 
QRc-(CRP, AGP).

Quadratic regression models Rc-(CRP) and QRc-(AGP) showed 
a signifi cant parabolic correlation (p <0.05) between ferritin 
concentrations and infl ammation. In the case of the QRc-(AGP) 
model, estimated coeffi  cients in all quantiles diff er signifi cantly 
from zero. In the QRc-(CRP), the coeffi  cients associated with the 
linear ln(CRP) at the 0.10 quantile and the quadratic ln2(AGP) at 
the 0.90 quantile were not signifi cant. As in the case of regression 
to the mean, the QRc models confi rm that the relationship between 
ferritin and both infl ammation biomarkers is not completely linear.

The graphic versions of the quadratic fi ts of the estimated 
conditional quantiles in Table 1 (models 4 and 5) can be seen in 
Figures 2c and 2d.

Infl ammation’s eff ect on ferritin seems to be accentuated as CRP 
values increase (Figure 2c), as seen in children in the 0.25 and 
0.50 percentiles. In the two highest quantiles, ferritin values also 
increased due to the eff ect of infl ammation; but the increase is 
discrete and almost linear.

Figure 2d shows a positive increase of ferritin from each 
quantile function’s vertex. As AGP values increase, the eff ect of 
infl ammation decreased toward the tail’s upper distribution (0.75 
and 0.90 percentiles).

When both infl ammation biomarkers were considered in the 
Rc-(CRP, AGP) quadratic regression model, all estimated 
coeffi  cients showed a statistically signifi cant positive eff ect, with 
non-linear ferritin growth (Table 1).

Estimation by quantiles in the QRc-(CRP, AGP) model suggests a 
more complex situation (Table 1), since the infl uence of explanatory 
variables on ferritin varied from one quantile to another, and some 
were signifi cant in only some quantiles. The ln(CRP)’s eff ect 
was only statistically signifi cant in the subpopulation of children 
who had the highest iron reserves. The ln2(AGP) variable is the 

Figure 2: Linear and quadratic relationships between: (a) ln(CRP) and ln(ferritin); (b) ln(AGP) and ln(ferritin). Quadratic relationship by the 
following quantiles: (θ = 0.1; 0.25; 0.50; 0.75; 0.9) between (c) ln(CRP) and ln(ferritin); (d) ln(AGP) and ln(ferritin)

AGP: Alpha-1-acid glycoprotein; CRP: C-Reactive protein
Gray dots represent the concentrations of the iron defi ciency biomarker (ferritin). In graphs (a) and (b) the dashed line is the linear regression line and the solid line repre-
sents the quadratic function fi tted to the data. In fi gures (c) and (d) the curves represent the quadratic functions, by quantile. The vertical dashed line indicates the WHO-
recommended cut-off  point defi ning infl ammation (5 mg/L for CRP and 1 g/L for AGP).
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most important in explaining ferritin’s variation throughout the 
conditional distribution.

Statistical signifi cance of OLS and QR estimate diff erence 
Within the 0.25 to 0.90 quantiles of the QRc-(CRP) model, 
estimates of ln(CRP)’s eff ects are within the estimation interval 
of the OLS regression (Figure 3a), which indicates that in this 
part of ferritin’s conditional distribution, the linear relationships 
identifi ed by QRc are the same as those suggested by classical 
regression. However, the eff ect of ln2(CRP) at the 0.25 quantile is 
signifi cantly higher than the OLS estimate, suggesting that in this 
part of the distribution, CRP’s quadratic eff ect is higher than the 
OLS estimate.

Figure 3b shows that the estimates of the eff ect of ln(AGP) in the 
QRc-(AGP) model is signifi cantly higher at the 0.50 quantile of 
the distribution when compared to the mean estimate, indicating 

that around the median of the conditional 
distribution of ferritin, the linear eff ect of 
AGP could be greater than that estimated by 
regression to the mean.

The estimates of the linear eff ects of the two 
infl ammation biomarkers on ln(ferritin) at 
almost all quantiles in the QRc-(CRP, AGP) 
model are within or very close to the OLS 
estimate’s confi dence interval limits (Figure 
3c), while the eff ect of ln2(CRP) at the 0.25th 
percentile is signifi cantly larger than the 
estimate for the mean, confi rming that CRP’s 
quadratic eff ect is larger than that estimated 
by classical regression in this part of the 
distribution.

Statistical signifi cance of diff erences 
between estimated coeffi  cients at condi-
tional quantiles The analyses of greatest 
interest focused on the 0.10, 0.25, and 0.50 
quantiles, where adjusting for the eff ect of 
infl ammation on ferritin concentrations was 
most likely to produce a change in iron defi -
ciency prevalence, since they represent the 
subpopulation of children with ferritin concen-
trations around the WHO-recommended cut-
off  point defi ning iron defi ciency.

The eff ects of CRP (both linear and 
quadratic) are similar across quantiles in the 
QRc-(CRP) model. The coeffi  cient equality 
test[27] shows that there are no statistically 
signifi cant diff erences between estimated 
values in the 0.10, 0.25 and 0.50 quantiles. In 
the QRc-(AGP) model, statistically signifi cant 
diff erences were found (F = 5.0548, p <0.05) 
in AGP’s linear eff ect between the 0.10 and 
0.50 quantiles.

The tests for the equality of the estimated 
coeffi  cients in the QRc-(CRP, AGP) model 
indicate that there are signifi cant diff erences in 
the quadratic eff ect of CRP between the 0.10 
and 0.25 quantiles (F = 4.1486, p <0.05) and 

in the eff ect quadratic of the AGP between quantiles 0.10 and 
0.50 (F = 4.5198, p <0.05).

Impact of adjustments on estimated iron defi ciency prevalence 
Table 2 summarizes the median ferritin estimates and adjusted and 
non adjusted iron defi ciency prevalences for the two correction 
approaches. Adjusting ferritin concentrations using internal 
reference values for infl ammation produced a mean increase in 
iron defi ciency prevalences of 2.6, 2.7 and 4.5 percentage points 
according to the RcC-(CRP), RcC-(AGP) and RcC-(CRP, AGP) 
methods. Iron defi ciency prevalence calculated using the QRcC-
(CRP), QRcC-(AGP), and QRcC-(CRP, AGP) methods led to a 
mean increase of 2.8, 2.8, and 6.3 percentage points (Table 2).

The diff erences in the estimated prevalence of iron defi ciency 
before and after adjustment for RcC-(CRP), QRcC-(CRP), RcC-
(AGP) and QRcC-(AGP) do not reach statistical signifi cance, 

Table 1: Parameter estimates (and standard errors) of quadratic OLS and quantile 
regression models for ln(ferritin)

Mean
Quantile

0.10 0.25 0.50 0.75 0.90
Models R-(CRP2) QR-(CRP2)

Intercept   3.097* 
(0.029)

 1.664* 
(0.014)

   2.448* 
(0.059)

3.147* 
(0.043)

3.814* 
(0.031)

4.196* 
(0.036)

ln(CRP)   0.092*
(0.018)

  0.059 
(0.033)

    0.088* 
(0.031)

    0.099* 
(0.023)

0.086*
 (0.018)

0.073* 
(0.021)

ln(CRP)2    0.039*
(0.009)

   0.031 
(0.016)

    0.067* 
(0.017)

    0.051* 
(0.010)

0.017* 
(0.007)

0.006 
(0.011)

Adjusted R2

and pseudo 0.036 0.001 0.021 0.034 0.020 0.013

R-(AGP2) QR-(AGP2)

Intercept    3.137*
 (0.026)

    1.701* 
(0.027)

    2.524* 
(0.053)

    3.269* 
(0.041)

3.815* 
(0.026)

   4.159* 
(0.032)

ln(AGP)    0.617* 
(0.087)

    0.418* 
(0.133)

    0.650* 
(0.166)

    0.862* 
(0.129)

0.478* 
(0.064)

   0.328*
 (0.100)

ln(AGP)2    0.779* 
(0.087)

    0.751* 
(0.143)

    0.859* 
(0.124)

    0.884* 
(0.127)

0.588* 
(0.096)

0.574*
 (0.110)

Adjusted R2

and pseudo  0.053 0.027 0.032 0.034 0.024 0.020

R-(CRP2,AGP2)  QR-(CRP2, AGP2)

Intercept 3.079* 
(0.031)

    1.704* 
(0.020)

2.428*
 (0.062)

    3.147* 
(0.048)

    3.792* 
(0.031)

4.126* 
(0.038)

ln (CRP) 0.074* 
(0.030)

  0.042 
(0.031)

0.058 
(0.038)

    0.091* 
(0.028)

    0.069* 
(0.021)

0.076*
 (0.028)

ln (AGP) 0.330* 
(0.111)

    0.410* 
(0.091)

   0.417* 
(0.198)

    0.304* 
(0.135)

   0.237* 
(0.082)

  0.066
 (0.135)

ln (CRP)2 0.023* 
(0.009)

   0.018
 (0.012)

0.053 
(0.018)*

    0.033* 
(0.010)

   0.007 
(0.008)

  0.004 
(0.012)

ln(AGP)2 0.595* 
(0.096)

    0.745* 
(0.094)

0.677* 
(0.109)

   0.450* 
(0.126)

    0.438* 
(0.062)

   0.414*
 (0.133)

Adjusted R2

and pseudo  0.064 0.028 0.041 0.045 0.030 0.027

AGP: Alpha-1-acid glycoprotein; CRP: C-Reactive protein; OLS: Ordinary least squares regression; 
QR: Quantile regression 

Standard errors appear in parentheses. The * indicates signifi cant coeffi  cients (p <0.05) adjusted R2 and 
pseudo               represent the capacity of the independent variables to explain the variation of ferritin in the 
OLS and QR regression models, respectively.
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(see graph in Table 2), but they 
could be important from an epi-
demiological point of view, since 
the upper limit of the intervals 
reaches diff erences in preva-
lence >6% with respect to the 
unadjusted model. However, 
their confi dence intervals over-
lap, so it cannot be ruled out 
(with an error probability of less 
than 5%), that the small preva-
lence diff erences obtained from 
these models are due to chance.

The diff erences in the preva-
lence of iron defi ciency estimated 
before and after adjustment by 
RcC-(CRP, AGP) and QRcC-
(CRP, AGP) models are sta-
tistically signifi cant (p <0.05). 
Estimated prevalence is higher 
when QRcC-(CRP, AGP) is used. 
In this case, the confi dence inter-
val's upper limit for the diff erences 
in prevalence is greater than 9%. 

DISCUSSION
Coeffi  cients estimated by linear 
regression for the sample of 
1365 children were slightly 
diff erent than those obtained by 
Pita,[16] due to the exclusion of 
the 10 individuals with outliers in 
AGP and CRP values.

The small values of the R2 and 
pseudo R2 fi t measures[28] and 
the signifi cant p-values of coef-
fi cients in the quadratic regres-
sion and quantile quadratic 
regression models indicate that 
although the data show high 
variability, there is a non-linear 
trend to the response which 
off ers relevant information on 
the relationship between ferritin 
and biomarkers for infl amma-
tion. Note that the goal of regression correction methods is not 
to predict ferritin concentrations, but to remove infl ammation’s 
eff ect on ferritin concentrations. In quantile regression, the best 
estimate for each individual is the one that minimizes the abso-
lute diff erence between observed values and estimated values for 
each of the quantile models.

Quantile regression was able to detect that infl ammation may 
have diff erent eff ects on diff erent parts of iron status’ conditional 
distribution. In agreement with other studies,[6,29] we found that 
high concentrations of CRP and AGP are associated with high 
ferritin concentrations, but it would be risky to generalize the 
eff ect of infl ammation on these values. These results suggest that 
infl ammation exerts less infl uence on ferritin concentrations in 
children with the highest iron stores.

Reference values for serum ferritin concentrations fall within the 
range of 15–300 μg/L, and are lower in children.[9] Apparently-
healthy children were selected in the current study, so it is expected 
that in the subpopulation with high ferritin concentrations resulting 
from high iron stores, physiological homeostasis would be 
expected to control infl ammation’s eff ect on regulating deviations 
in iron status indicator ranges, thus maintaining a state of balance 
in the body.

The use of quadratic regression models to estimate 
infl ammation’s infl uence on ferritin allows us to recognize that 
the mean eff ect of infl ammation on ferritin concentrations in 
this sample is manifested from AGP and CRP values below 
the limits WHO designates as clinically relevant (CRP ≥5 and 
AGP >1).[2]

Figure 3: Regression coeffi  cients estimated by OLS and QR

AGP: Alpha-1-acid glycoprotein; CRP: C-Reactive protein; OLS: Ordinary least squares regression; QR: Quantile regression

The x-axis represents the diff erent conditional quantiles. In each panel, the horizontal red lines represent the point estimate 
(solid line) and the 95% confi dence interval (dashed lines) of the OLS regression coeffi  cients. Black dots interconnected by 
solid lines represent point estimates of the QR coeffi  cients. The gray area shows the 95% confi dence intervals. 
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Interest in correcting ferritin focused on the 0.25 quantile, which 
represents the subpopulation of children with ferritin concentrations 
close to the cut-off  point recommended by WHO to signal iron 
defi ciency (ferritin <12 μg/L). According to the QRcC-(CRP, AGP) 
method, 80.8% of children with potentially overestimated ferritin 
values—who, after applying the infl ammation correction changed 
their status from adequate iron stores to iron defi ciency—were 
part of the 0.25 quantile subpopulation.

Infl ammation’s eff ect on the population of children with the highest 
(0.75 and 0.90 quantiles) and lowest (0.10 quantile) iron stores also 
provoked an overestimation of ferritin values. However, while an 
individual correction for infl ammation would result in a decrease in 
estimated ferritin concentration values, these changes would not 
modify the children’s iron status classifi cation, or, consequently, 
iron defi ciency prevalence.

Using QR as a method of estimating the eff ects of infl ammation 
on ferritin reduces the bias that undetected ferritin values can 
introduce. In this investigation, the censored data comprise part 
of the 10% of observations located below the regression line of 
the 0.10 quantile, so when substituting the unknown value for 
the minimum detected value, there is no signifi cant change in 
estimates of the eff ects of infl ammation biomarkers on ferritin at 
the distribution’s lower end.

Infl ammation’s eff ects may be more important in some 
subpopulations than in others, but if the eff ects estimated 
in the conditional quantiles are considered equivalent to the 
eff ect estimated using only the conditional expectation, the RcC 
approach may be preferred over the QRcC method, due to its 
simplicity; especially in population studies. But before making 
decisions based on these results, the QRc estimate’s confi dence 

intervals should be checked to see 
whether they include values with 
important epidemiological implications.

Another aspect to consider is the choice of 
infl ammation cut-off  points, because iron 
defi ciency estimates depend not only on 
fi gures of iron reserves in the population, but 
also on the presence of infl ammation in the 
population. To avoid overfi tting, corrections 
of ferritin concentrations are restricted to 
individuals whose infl ammatory biomarkers 
exceed reference values. The BRINDA 
group[7] recommends using the upper 
limit of the fi rst decile of each biomarker as 
a reference value. Based on this criteria, 
Pita[16] obtained a CRP reference value of 
0.10 mg/L and an AGP reference value of 
0.54 g/L.

In the current study, the non-linear 
trend between infl ammation and ferritin 
concentrations obtained with the 
quadratic regression models Rc-(CRP) 
and Rc-(AGP) showed that in a population 
with low infl ammation levels (such as 
those in the Cuban population),[16] the 
threshold from which we can assume that 
infl ammation begins to exert infl uence on 

ferritin concentrations may be greater than that determined by the 
upper limit of the fi rst decile (CRP = 0.31 mg/L and AGP = 0.67 g/L).

The QRcC approach refl ects the underlying relationship between 
ferritin and infl ammation better than the RC approach, but diff erences 
in the estimated eff ects along the conditional distribution of ferritin 
with respect to mean eff ects did not produce important diff erences in 
iron defi ciency prevalences adjusted by both methods.

Infl ammation’s eff ect on ferritin may be greater in some 
subpopulations and therefore the adjusted concentrations in 
these subpopulations will decrease more compared to adjusted 
concentrations in other subpopulations. However, these diff erences 
will only be important to prevalence if they occur in the subpopulation 
of children whose ferritin values are around the 0.25 quantile, which 
is the quantile closest to the cut-off  point recommended by WHO to 
defi ne iron defi ciency (ferritin <12 μg/L).[2]

In this investigation, the eff ects of infl ammation that were 
statistically signifi cant at the 0.25 quantile only occurred for CRP’s 
quadratic eff ect in the QRc-(CRP) and QRc-(CRP, AGP) models.

Compared with unadjusted prevalence, the RcC and QRcC 
approaches led to similar iron prevalence estimates when ferritin 
concentrations were adjusted for CRP or AGP.

The highest estimates were obtained when ferritin concentrations 
were adjusted for both biomarkers, particularly when the QRcC 
approach was used. Developing tools to examine correction 
method validity is both merited and necessary.

One limitation of this study is that the children selected for 
the study came from a two-stage cluster sample,[16] so 

Table 2: Medians and interquantile ranges (IQR) of unadjusted and infl ammation-adjusted 
ferritin; estimated prevalence of iron defi ciency (% ID), unadjusted and adjusted for 
infl ammation. Prevalence diff erences (proportions and 95% confi dence intervals) of ID before 
and after adjustment by each correction method

Models
Ferritin Iron 

Defi ciency 95% CI and proportion 
diff erences 

Median IQR % ID n

Unadjusted 25.30 13.00–48.7 23.22 317

Adjusted

  RcC-(CRP) 23.04 11.69–41.58 25.79 352

  QRcC-(CRP) 22.70 11.51–40.76 26.01 355

  RcC-(AGP) 23.28 11.59–41.21 25.93 354

  QRcC-(AGP) 21.90 11.57–42.58 26.01 355

  RcC-(CRP, AGP) 21.68 10.94–38.46 27.69 378

  QRcC-(CRP, AGP) 21.11 10.31–40.50 29.45 402

AGP: Alpha-1-acid glycoprotein; CI: Confi dence interval; CRP: C-Reactive protein; QRcC: Quantile quadratic regres-
sion correction; RcC: Quadratic regression correction 
N  = 1365
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