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ABSTRACT
INTRODUCTION Dengue is a disease caused by any one of fi ve 
virus serotypes and transmitted to humans by the Aedes aegypti 
mosquito. Climate change and health conditions have combined 
to make dengue a global public health problem. The situation is 
especially serious in Colombia, where by week 36 of 2018, den-
gue incidence was 96 cases per 100,000 population, with a total 
of 111 deaths. Different mathematical and statistical models have 
been proposed to understand the dynamics of transmission and 
consequently to apply control strategies to reduce the number of 
dengue cases.

OBJECTIVE Forecast the number of dengue cases expected in Co-
lombia from 2018 through 2022 with the stochastic Auto-Regressive 
Integrated Moving Average (ARIMA) model and use the results to 
adjust the parameters of an ordinary differential equations model in 
order to determine the disease’s basic reproduction number in the 
year presenting the highest number of dengue cases. 

METHODS An ecological time series study was conducted to fore-
cast dengue incidence in Colombia from 2018 through 2022. The data 
were compiled from Colombia’s National Health Institute series on 
dengue cases reported by epidemiological week from 2009 to 2017. 
The stochastic ARIMA time series model was applied. Forecasts were 
then analyzed, and the year with the highest number of predicted 
cases was used to adjust the parameters of an ordinary differential 

equations model (ODE) through nonlinear least squares regression to 
calculate the vectorial capacity of the transmitting mosquito. 

RESULTS Forecasts of the total number of dengue cases per year 
in Colombia for the following fi ve years were: 32,411 (2018); 88,221 
(2019); 56,392 (2020); 47,940 (2021); and 77,344 (2022). The highest 
number of cases was forecast for 2019. Values for the parameters 
affecting dengue transmission that year (by the year’s four quarters), 
such as recovery rate (0.0992, 0.0838, 0.1177, and 0.1535, respec-
tively), vectorial capacity of the transmitting mosquito (0.1720, 0.1705, 
0.1204, and 0.2147, respectively) and the basic dengue reproduction 
number (1.73, 2.03, 1.02, and 1.40, respectively) were estimated, in-
dicating that most cases would occur in the second quarter and, since 
the basic reproduction number values were >1, the disease would 
persist in the country throughout the entire year.

CONCLUSIONS ARIMA model forecasts for 2018 through 2022 pre-
dicted the highest incidence of dengue cases in Colombia would occur 
in 2019. Comparison of ARIMA model forecasts and the ODE model 
allowed projections of possible variations in dengue cases reported, 
and the basic reproduction number predicted that dengue would per-
sist throughout 2019.

KEYWORDS Arboviruses, climate, dengue, models, theoretical, basic 
reproduction number, prognosis, Colombia

INTRODUCTION
Arboviral diseases have become a global public health problem 
due to factors such as climate change, population growth, waste 
accumulation, pollution, inadequate recycling, and insuffi cient 
vector control.[1] Dengue is an acute viral disease transmitted 
to humans by its principal vector, the Aedes aegypti mosquito. 
Dengue virus (DENV) comprises fi ve serotypes (DENV1, 
DENV2, DENV3, DENV4, DENV5);[2] the fi rst four circulate 
simultaneously in Colombia.[3] The different serotypes do not 
confer cross immunity; an individual who recovers from one 
acquires permanent immunity against that serotype but only 
partial and temporary immunity against the other four types.[4]

Several studies have shown that one of dengue’s greatest dangers 
is the increased severity of the infection when multiple serotypes 
are simultaneously present. That is, a secondary infection with 
another dengue serotype has a greater probability of causing 
severe acute infections than the primary disease, due to formation 
of autoimmune complexes that can attack the body.[5,6]

Application of different theoretical and mathematical models has 
helped us understand the epidemiological dynamics of dengue. 
Nonlinear models based on systems of ordinary differential 
equations (ODE) describe variations in numbers of cases in a 
specifi c population. However, many factors and conditions are 
involved in dengue transmission dynamics, and any variation 
in one of them can lead to signifi cant changes in the shape of 
the curves that describe growth of the infected population. For 
example, the model proposed by López[7] contains the following 
variables: average numbers of healthy, infected, and recovered 
individuals and average number of mosquitos in the environment; 
classifi ed as larval (aquatic) or aerial (adult) phase, with adults 
also classifi ed as female or male. 

Through a series of calculations, this model was simplifi ed to 
include only two variables (proportion of healthy individuals and 
proportion of infected individuals), thus making it easier to analyze 
while preserving the hypothetical viral transmission factors of the 
original version.

Amaku’s model considers the virus’s state of latency in the 
mosquito population, its vertical transmission, and how variations 
in climate factors can infl uence transmission dynamics.[8] Koiller 
proposes a population growth model for the Aedes aegypti 
mosquito that considers all phases and states in its life cycle.[9] 
The model then incorporates a biological control measure through 
use of Wolbachia bacterium. This mosquito-growth dynamic is 
included in a model to determine the dynamics of transmission 
to humans under these assumptions, considering the number of 
individuals exposed. 

IMPORTANCE Forecasts of dengue cases in Colombia 
from 2018 through 2022 based on a time-series study 
design, combined with an ordinary differential equations 
model, can help health systems and institutions take more 
effective, precise preventive and control measures to re-
duce dengue infection, a serious health problem in the 
country.
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Each factor involved in the complex dynamics of the disease 
(presence of asymptomatic individuals and infected individuals, 
dispersion of the vector and infected individuals, application of 
one vector control or another, resistance to controls, reinfection 
by a different serotype, etc.) opens new modeling options. 
No single model can include all the real factors involved in 
dengue transmission, so selection of a forecasting model often 
depends on availability of reliable information on the variables 
and parameters involved, and on the specifi c objective of the 
projection.

Time-series modeling, particularly with ARIMA models[10]––which 
benefi t from repeated autocorrelations to make extrapolations––
allows reasonable estimates of future effects of an infectious 
outbreak on a specifi c population. In combination with other 
predictive nonlinear models, ARIMA models have been extremely 
useful in epidemiological investigations to prevent and control 
infectious diseases.[11‒14]

In Colombia, temperature changes caused by climate 
phenomena and the growing population living in unhealthy 
conditions have caused intense propagation of dengue virus 
and the appearance of new viruses in different regions.
[15‒17] The community epidemiological bulletin published by 
the National Epidemiological Surveillance System (SIVIGILA) 
reported a total of 13,427 confirmed dengue cases at the 
national level by week 23 of 2018,[15] and by week 36, an 
incidence rate of 96 cases per 100,000 population, with 111 
deaths.[16] The Ministry of Health and Social Protection 
advised health sector units to monitor and control virus 
transmission and its effects on the population, which 
reconfirms the importance of projections to support decision-
making and financial resources for preventive actions in the 
face of such a serious health problem.

The purpose of this study was to apply mathematical models 
to forecast the average number of dengue cases per year from 
2018 through 2022 in Colombia, and to determine dengue’s basic 
reproduction number (BRN) in the year with the highest number 
of predicted cases in order to identify possible outbreaks.

METHODS 
Type of study A time-series study was conducted using 
Colombia’s National Institute of Health routine surveillance 
system database. The study was conducted from February 2017 
through March 2018 by researchers in San Juan de Pasto, Nariño 
Department, Colombia.

Data sources The database from which the reports on incidence 
of dengue were taken as time series from 2009 to 2017 was 
obtained from the National Health Institute’s SIVIGILA web portal.
[15] Specifi cally, the data correspond to dengue cases reported 
by the country’s departments (principal administrative divisions) 
and municipalities as “confi rmed” cases of dengue or severe 
dengue. Data were compiled in XLS-formatted fi les and included 
records of dengue cases for each epidemiological week of the 
respective year. 

Variables The study considered two variables: 1) number of 
dengue cases in Colombia and 2) number of epidemiological 
weeks.

Mathematical models
ARIMA model This model effectively combines three components: 
autoregressive (AR), integrated (I) and moving average (MA). 
It is used to analyze stochastic time series and takes into 
consideration the correlation between the data and the errors 

corresponding to the preceding periods.[10] It is generally 
represented as , where  is the number of 
autoregressive terms,  is the number of differences, and

 is the number of moving average terms. Mathematically it is 
expressed as:

where  and  are the parameters to 
estimate and  is a white-noise process.

The mathematical processes and algorithms to analyze time 
series and their respective predictive process with ARIMA follow 
four steps:[18]

1) Defi nition of the model, which includes the assumption 
that forecast errors will be distributed normally around 
the mean and time-independent variance (white noise) 
and application of simple and partial autocorrelation 
functions (ACF and PACF, respectively). 

2) Estimation of parameters with the orders of the fi tting 
process, according to ACF and PACF functions.

3) Evaluation and validation of the tentative ARIMA model.
4) Forecasting of time series.

To carry out these four steps, researchers used R software,[19] 
a free programming language and statistical computing and 
graphics tool, together with a series of algorithms and packages 
related to the models under consideration.

Step 1: The time series was generated from the data to be 
analyzed. Trend and seasonality could be identifi ed and removed 
through differentiation. A density histogram was also constructed 
to determine whether the series is stationary, which means 
forecast errors normally distributed, with zero mean and constant 
variance. 

Step 2: ACF and PACF analyses were performed along with 
the application of several functions related to ARIMA in the R 
statistical package; respective graphics were plotted indicating 
the appropriate order of the lag in the linear  model, 
and respective parameters of the polynomial coeffi cients were 
estimated for the tentative model.

Step 3: The Ljung-Box[20] contrast was used to determine the 
dependency relation among residuals, enabling validation of the 
model’s forecasting capacity.

Step 4: The previously validated  model and 
periodogram were used to forecast future incidence of dengue.

ODE model These equations relate a dependent variable with 
one or more of its derivatives with respect to an independent 
variable.[21] In infectious diseases such as dengue, ODEs are 
generally used to represent variations in time of average numbers 
of susceptible individuals, infected individuals and recovered 
individuals, providing a basis for fi tting models with parameters 
that weight features associated with disease transmission. These 
models are used to estimate the disease prevalence or to predict 
its disappearance in a particular setting.[22,23]

This study is based on a system formulated by López[7] presented 
below and adjusted to fi t the reported data on dengue in Colombia. 
The authors have shown that the new model, a simplifi ed version 
of a more complex one that includes a larger number of variables 
and parameters, nevertheless preserves the properties of the 
original model. The rationale for the use of this simplifi ed system 
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is that the only data available for Colombia from SIVIGILA and 
the National Statistical Administration Department (DANE)[24] 
are life expectancy and the number of dengue cases reported 
per epidemiological week. The transformed model is the simplest 
possible without affecting the close approximation of estimated 
case numbers.

The original model was rewritten as:

      MODEL 1

Where
 and  are the proportion of susceptible and infected 

individuals, respectively;
is the variation in the proportion of susceptible individuals over 

time (measured in weeks);
is the variation in the proportion of infected individuals over 

time.

In this model, 1 (100%) represents the total human population 
under consideration, so the sum of  and  (proportions of 
susceptible and infected individuals) will never be >1; i.e., 

.

Given that  represents the population growth minus death rate, 
it can be interpreted as the proportion of people entering weekly 
into the susceptible population, while  and  represent the 
proportion of susceptible individuals and infected individuals who 
die each week, respectively. Considering that  is the dengue 
recovery rate,  represents the proportion of infected individuals 
who recover each week. 

Now, if 

Where

 is the probability of mosquito-to-human viral transmission;
 is human-to-mosquito contagion rate; 
 is development rate of immature mosquitos into female 

adults; and
 is development rate of immature mosquitos into male adults;

Then

is infectious rate of susceptible individuals as a result of contact 
with a previously infected female adult mosquito (infected with the 
virus due to prior contact with an infected human).

is the proportion of susceptible individuals who become 
infected with the virus each week.

In this case,  represents the vectorial capacity of the transmitting 
mosquito (Aedes aegypti), i.e., the number of secondary 
infections per week following the entry of an infected individual 
into a susceptible setting.[25,26]

Nonlinear least squares regression This method is used to 
estimate the value of one or more parameters in a function in order 
to fi t the function’s graph more closely to the data distribution in 
the Cartesian plane.[27] Values of parameters  and in Model 
1 were estimated weekly to better fi t the real-time data of dengue 
cases in Colombia.

According to the National Statistics Administrative Department,[24] 
average life expectancy in Colombia is 74 years (3848 weeks), so 
μ was defi ned as   per week. Estimated values of  and 
 minimize the function: 

      MODEL 2

Where
 is the number of data to be fi tted;
 (  )are the proportions of confi rmed cases from 

week 1 to  week ); and
 (i = 1,...,n) are estimated values of  for each week using 

Model 1. 

Data collection and processing A time series was generated with 
SIVIGILA data using R statistical software to analyze the trend and 
seasonality of dengue cases. To generate the number of individuals 
infected with dengue for each week of 2009 through 2017 and 
determine the time series for the respective forecasting analysis, a 
fi lter was applied to the fi les reported annually, to select only dengue 
cases per week. This process was repeated for each year (2009 
through 2017). The stochastic ARIMA model was also applied to 
generate annual forecasts of dengue cases for 2018 through 2022.

Then, totaling all cases reported in all epidemiological weeks of 
each year, data were taken from the 52 weeks of the year in which 
the most cases were reported. To determine the disease’s BRN, 
mathematical software Matlab was used to fi t a mathematical 
model based on a system of nonlinear ODEs.[28]

RESULTS
Figure 1a shows the time series of classic dengue cases reported 
by epidemiological week from 2009 through 2017 in Colombia. 
Week 1 corresponds to the fi rst week of 2009 and week 469 to 
the last week of 2017. The time series shows the occurrence of 
several dengue outbreaks; for example, week 59 (7th week of 
2010) when 1787 cases were reported, week 224 (16th week of 
2013) with 3231 cases, and week 370 (5th week of 2017) with 
3301 cases.

Figures 1b and 1c show the existence of simple and partial 
autocorrelations every 5 terms in the data, which suggests an 
autoregressive prediction of order 5, moving average of order 
1; and order of integration 1. Thus, the appropriate method to 
project dengue cases in Colombia would be , whose 
polynomial model is given by the equation:

Application of the Ljung-Box test in software R found the chi-
square value to be  and p value 0.5993>0.05. These 
differences showed that there was no autocorrelation in the 
residuals and the tentative model was valid for forecasting.

The normality test and the periodogram (shown in Figures 2a and 
2b, respectively) helped determine that the adjusted residuals 
had a constant mean and variance, and enabled identifi cation of 
periods with the highest peaks of dengue cases. Figure 2a shows 
that the difference between adjacent data of the series approaches 
a normal curve and Figure 2b shows the occurrence of three 
peaks; the fi rst is presented in the logarithmic scale of  

which suggests selecting a cycle period of  weeks to 
make forecasts. Considering the 160-week period and time-series 
data, a process to validate the model was undertaken for which 
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data from the 52 weeks of 2017 were used as real observations 
and the forecast was generated with the ARIMA(5,1,1) model 
of the same year. Figure 3 shows a good fi t with a root mean 
squared error (RMSE) of 122.84 and Theil index (Theil’s U) of 
0.037. The model’s fi t for 2017 was validated and the stochastic 
model was used to generate a long forecast of potential dengue 
cases through 2022.

Weekly forecasts are shown in Figure 4a, which extends the 
series presented in Figure 1a to Week 729 (week 52 of 2022) 
with a margin of error of 0.5%. The forecast shows two other 
possible dengue outbreaks: one in 2019 and another in 2022. 
The fi rst peak can be observed in Week 544 (week 23 of 2019) 
with an approximate total of 2624 cases. The second peak occurs 
in Week 690 (week 13 of 2022) with approximately 2336 cases.
Figure 4b shows a bar chart with data on predicted cases per year. 
According to those projections, the highest number of cases will 
occur in 2019 (approximately 88,221) and in 2022 (approximately 
77,344 cases).

Since the ARIMA forecasts of total dengue cases are highest 
for 2019, an adjustment was made to parameters  and  of  
Model 1 through the nonlinear least squares regression given 
in Model 2 for data obtained for that year. Figure 5 shows data 
estimated by the ARIMA model projections and the solution for 
of the ODE system presented in Table 1, showing the results of 
the two different analytic models (one stochastic and the other 
deterministic). Although the estimates differ, the deterministic 
model (the ODE system) approximates the stochastic model 

(ARIMA) after calibration of parameters via 
the nonlinear least squares regression.

In Model 1,  is the proportion of infected 
individuals. To adjust the model without loss 
of generality, the data yielded by ARIMA 
were normalized per 10,000 population; 
for example, the initial number of 1099 
dengue cases (Week 1) was given as: 

. To better adjust , the 
52 weeks of 2019 were divided into four 
epidemiological quarters. The fi rst quarter is 
composed of weeks 1–15, and the second, 
third, and fourth, of weeks 16–28, 29–43, 
and 44–52, respectively. 

The initial conditions for the fi rst quarter 
are given by  (1099 infected 
individuals). The nonlinear least-squares 
regression estimates were  per 
week and  per week. For the 
second quarter, the initial condition was 
set as the fi nal number of cases in the fi rst 
quarter, i.e.,  and after the 
adjustment, the following estimates were 
obtained:  and  per 
week. Similarly, for the third quarter, the 
initial condition was: , and 

 and  per week. Finally, 
for the fourth quarter, the initial condition 
was: , and  and 

 per week. 

Using the values of parameters estimated 
for each quarter in 2019, dengue’s BRN values were calculated. 
Vectorial capacity was recalculated as  where 

 represents the BRN, defi ned by López[7] as the number of 
secondary infections produced after introduction of an infected 
individual into a susceptible setting. Unlike vectorial capacity, BRN 
is not measured in units of time, since it measures secondary 
infections produced during an individual’s entire infectious period, 
while vectorial capacity represents the mosquito’s capacity per 
unit of time to infect humans due to the original infected individual. 
When the BRN value is >1, the disease will persist in the setting. 
But when BRN is <1, dengue will disappear.[7]

 values estimated for each period in 2019 were:
 1st quarter: 
 2nd quarter: 
 3rd quarter: 
 4th quarter: 

During all four quarters of 2019,  value was >1, indicating that 
the disease will persist in Colombia throughout the entire year. 
Since the second quarter had the highest value, the number 
of cases will be higher during those weeks, as observed in 
Figure 5.

Table 1 summarizes the forecasts for 2019 by epidemiological 
week, with both the ARIMA and ODE models. The two models’ 
forecasts presented only minor differences, except in the second 

Figure 1: Number of dengue cases. (a) Number of cases. (b) Simple autocorrelations. 
(c) Partial autocorrelations. Colombia, 2009‒2017
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and third weeks of May, when the numbers of predicted cases 
differed by more than 350.

DISCUSSION
No prior studies for Colombia have used adjusted numbers 
for forecasting dengue cases via time series using the ARIMA 
model, so there are no comparable results to examine. However, 
time-series analysis to forecast incidence of dengue has been 
the subject of research in other countries. In Brazil, for example, 
Cortes[29] applied and adjusted an ARIMA model, which he 
used to detect peak incidence and distribution patterns of the 
disease in two different areas of the country. In Sri Lanka, in 
the Gampaha District, Withanage[30] developed a forecasting 
model for dengue using multiple time-series regressions and 
successfully modeled the effects of climatic factors on imminent 
outbreaks. Both studies predicted the disease’s distribution and 
incidence in a population, but unlike the present study, they did 
not determine other factors or measurements of the disease such 
as BRN and vectorial capacity (via integration with a determinist 
model such as ODE). Although this study’s forecasts do not 
exactly mirror reality, application of a time-series model and a 
dynamic system to forecast disease incidence can produce a 
mathematical modeling trajectory that can be further applied 
and improved.

Several ODE systems-based mathematical models de-
scribe dengue transmission in the population and in gener-

al make it possible to determine the BRN 
and vectorial capacity based on param-
eters included in the model. Sardar,[23] 
for example, obtained the BRN based on 
an ODE system, and Liu-Helmersson[26] 
generated both the BRN and vectorial 
capacity. However, neither study iden-
tified a specific value for parameters 
in a given region. Other studies have 
taken hypothetical parameters or pa-
rameters obtained in laboratory studies 
in countries with very different climatic 
and health conditions from the country 
of application. Sepúlveda-Salcedo,[31] 
for example, adjusted the mathematical 
model parameters to the data reported 
in one year, and based on that, obtained 
forecasts of dengue cases in subsequent 
periods, the forecasts preserving the 
properties and values of the previous pe-
riod’s parameters.

In this study, parameter values were estimat-
ed for 2019 based on Colombian data and on 
forecasts for that same year. Though similar 
to other studies in expressing vectorial ca-
pacity and BRN under the parameters of the 
ODE system, the ARIMA model forecasts and 
subsequent adjustment of ODE parameters 
through nonlinear least-squares regression 
applied here enabled projection of specifi c 
BRN values and vectorial capacity specifi c to 
Colombia in 2019. Thus, ODE forecasts do 
not depend on parameters from other coun-
tries or time periods. The predicted numbers 
of dengue cases and BRN provide informa-
tion on the disease’s behavior in upcoming 
years and specifi cally predict the weeks that 
could present more severe outbreaks. Since 
the ARIMA-model forecasts extend through 

2022, adjustments can be made over time to ODE parameters for 
subsequent periods to fi nd the corresponding .

To the best of our knowledge, no previous studies compared 
the application of ARIMA and ODE methods for viral diseases, 
or specifi cally for dengue. In addition to forecasting possible 
variations in the number of cases, the importance of this approach 
is that the ARIMA method allows forecasting of potential cases 
based solely on data already reported; with this forecast in mind, 
the ODE parameters can then be adjusted to provide information 
on which qualities (ODE parameters) are affecting the rise or fall 
in the number of cases. While it is important to predict occurrence 
of high numbers of cases, it is also important to identify the factors 
causing the increase, such as BRN, vectorial capacity, and other 
relevant parameters.

One shortcoming of the study is that it was based on data for past 
and present conditions, and results could change signifi cantly if, 
among other things, vector controls are applied or climatic and 
environmental conditions change; in the transmission of infectious 
diseases, a small change in conditions can lead to totally different 
behaviors than those previously forecast. Another limitation is 
that since the ARIMA model is not recommended for long-term 
forecasting, a four-year projection is likely to yield less accurate 
estimates. However, the 2019 forecasts in this study are in the 
range of close approximation. It is recommended that followup to 
the proposed forecasts be considered in order to establish them 

Figure 2: ARIMA model. (a) Normality test of residuals of adjusted model. (b) 
Periodogram of frequencies of peaks in which time-series cycles are presented 
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Figure 4: Number of dengue cases forecast (ARIMA), Colombia, 2018‒2022. 
(a) Forecasts with time series. (b) Forecasts with bar chart
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Table 1: Number of dengue cases forecast, Colombia by week for 2019 based on two mathematical models (ARIMA and ODE)

Month Week ARIMA ODE Month Week ARIMA ODE

January

W1 1099 1099

February

W1 1306 1329
W2 1159 1158 W2 1265 1383
W3 1053 1216 W3 1211 1435
W4 1166 1273 W4 1528 1483

TOTAL 4476 4746 TOTAL 5308 5630
Month Week ARIMA ODE Month Week ARIMA ODE

March

W1 1698 1528

April

W1 1618 1688
W2 1655 1569 W2 1577 1705
W3 1713 1606 W3 1606 1802
W4 1703 1638 W4 1884 1896
W5 1745 1665  

TOTAL 8515 8006 TOTAL 6684 7090
Month Week ARIMA ODE Month Week ARIMA ODE

May

W1 1683 1987

June

W1 2624 2352
W2 1697 2073 W2 2391 2401
W3 1626 2154 W3 2320 2442
W4 2086 2228 W4 2287 2472
W5 2398  2294  

TOTAL 9491 10736 TOTAL 9622 9667
Month Week ARIMA ODE Month Week ARIMA ODE

July

W1 2273 2493

August

W1 2081 2279
W2 2408 2505 W2 2059 2198
W3 2283 2433 W3 1801 2115
W4 2023 2358 W4 2114 2031

 W5 2100 1947
TOTAL 8988 9789 TOTAL 10156 10570

Month Week ARIMA ODE Month Week ARIMA ODE

September

W1 2070 1863

October

W1 1373 1539
W2 1848 1780 W2 1448 1462
W3 1618 1698 W3 1267 1388
W4 1550 1618 W4 1291 1307

TOTAL 7087 6960 TOTAL 5378 5697
Month Week ARIMA ODE Month Week ARIMA ODE

November

W1 1310 1342

December

W1 1493 1418
W2 1341 1370 W2 1479 1413
W3 1401 1392 W3 1431 1402
W4 1414 1408 W4 1310 1385
W5 1338 1416  

TOTAL 6803 6928 TOTAL 5713 5619

ARIMA: Auto-Regressive Integrated Moving Average[10]      ODE: Ordinary differential equations[21]

as a viable methodology that could be applied to other infectious 
diseases.

Despite its limitations, the study shows the usefulness of synergy 
between two models which, although with different rationales, 
complement one another to make forecasts useful for timely 
preventive actions.

CONCLUSIONS
Our forecasts for dengue in Colombia for 2018 through 2022 using 
the ARIMA model show that most cases will likely occur in 2019. 

The ARIMA forecasts enabled adjustment to ODE parameters 
and subsequent BRN estimates for dengue for that year, including 
possible variations in different quarters, and revealed the disease’s 
persistence. 

Despite the BRN’s importance (since it predicts the disappearance 
or persistence of a viral disease in a population), there are no 
reports on BRN for dengue. These estimations are essential for 
health institutions particularly before seasons with high predicted 
BRN values. These methods can be applied to other vector-
transmitted diseases such as Zika and chikungunya. 
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